Implication of Mismatch Between Stress and Strain-Rate in Turbulence Subjected to Rapid Straining and Destraining on Dynamic LES Models
نویسندگان
چکیده
Planar straining and destraining of turbulence is an idealized form of turbulencemeanflow interaction that is representative of many complex engineering applications. This paper studies experimentally the response of turbulence subjected to a process involving planar straining, a brief relaxation and destraining. Subsequent analysis quantifies the impact of the applied distortions on model coefficients of various eddy viscosity subgrid-scale models. The data are obtained using planar particle image velocimetry (PIV) in a water tank, in which high Reynolds number turbulence with very low mean velocity is generated by an array of spinning grids. Planar straining and destraining mean flows are produced by pushing and pulling a rectangular piston towards and away from the bottom wall of the tank. The velocity distributions are processed to yield the time evolution of mean subgrid dissipation rate, the Smagorinsky and dynamic model coefficients, as well as the mean subgrid-scale momentum flux during the entire process. It is found that the Smagorinsky coefficient is strongly scale dependent during periods of straining and destraining. The standard dynamic approach overpredicts the dissipation based Smagorinsky coefficient, with the model coefficient at scale in the standard dynamic Smagorinsky model being close to the dissipation based Smagorinsky coefficient at scale 2 . The scale-dependent Smagorinsky model, which is designed to compensate for such discrepancies, yields unsatisfactory results due to subtle phase lags between the responses of the subgrid-scale stress and strain-rate tensors to the applied strains. Time lags are also observed for the SGS momentum flux at the larger filter scales considered. The dynamic and scale-dependent dynamic nonlinear mixed models do not show a significant improvement. These potential problems of SGS models suggest that more research is needed to further improve and validate SGS models in highly unsteady flows. DOI: 10.1115/1.1989360
منابع مشابه
Propagation of Matrix Cracking and Induced Delaminatin in Cross-Ply Composite Beams Subjected to Bending Loads
Due to the mismatch of mechanical properties in composite laminates, propagation of delami-nation is considered as a severe damage mechanism in beams with various lay-up configurations. Delamination can be generated due to matrix cracking propagation or it can also be initiated due to the manufacturing process before using composite beams. Using a micromechanics model, this study is aimed to in...
متن کاملSize-Dependent Forced Vibration Analysis of Three Nonlocal Strain Gradient Beam Models with Surface Effects Subjected to Moving Harmonic Loads
The forced vibration behaviors are examined for nonlocal strain gradient nanobeams with surface effects subjected to a moving harmonic load travelling with a constant velocity in terms of three beam models namely, the Euler-Bernoulli, Timoshenko and modified Timoshenko beam models. The modification for nonlocal strain gradient Timoshenko nanobeams is exerted to the constitutive equations by exc...
متن کاملComparison of different turbulence models in a high pressure fuel jet
In this study, modeling of a fuel jet which has been injected by high pressure into a low-pressure tank are investigated. Due to the initial conditions and the geometry of this case and similar cases (like CNG injectors in internal combustion engines (ICE)), the barrel shocks and Mach disk are observed. Hence a turbulence and transient flow will be expected with lots of shocks and waves. Accord...
متن کاملInteraction Between Precipitation and Dynamic Recrystallization in HSLA-100 Microalloyed Steel
Strain induced precipitation in HSLA-100 steel was investigated by conducting hotcompression and relaxation tests at temperature range of 850°C to 1100°C and strain rate of 0.001s-1 to 1s-1. The absence of dynamic recrystallization at temperatures below 1000°C was attributedto the influence of dynamic precipitation. The stress relaxation tests showed that strain inducedprecipitation is possible...
متن کاملFINITE ELEMENT PREDICTION OF DUCTILE FRACTURE IN AUTOMOTIVE PANEL FORMING: COMPARISON BETWEEN FLD AND LEMAITRE DAMAGE MODELS
In sheet metal forming processes with complex strain paths, a part is subjected to large plastic deformation. This severe plastic deformation leads to high plastic strain localization zones and subsequent accumulation of those strains. Then internal and superficial micro-defects and in other words ductile damage is created. This damage causes quality problems such as fracture. Therefore, design...
متن کامل